What Is Awperative?

Awperative is a passion fueled Game Development Platform in C#; created by me, Avery Norris.
With the goal of low level, customizable and event driven game design. It is completely free and open
source and modifying it is actually encouraged!

Awperative could also be considered a Game Library but the definition is rather loose. | prefer to
narcissistically use the term Game Framework. Due to the alternate nature of Awperative compared
to most Game Development Tools.

Principles

Instead of offering specific "Technology" or "Tools" Awperative's goal is to provide a platform and
system rather than the content itself. My initial efforts have gone into purging as much "Development
Bias" from Awperative as possible.

Unity~ has a very good example of this bias. If you have worked in Unity 2D you are almost certainly
familiar with the fact that all Vectors for 2D Game Objects, are actually 3D despite the 2D
environment. This is becuase Unity was originally built as a 3D Game Engine. After initial success they
decided to make a 2D version. And when they did, rather than completely modify Unity internals, They
sanely chose to bandaid this original 3D environment by pretending the Z axis did not exist.

In other words, what I call "Developmental Bias" is when Development Tools implement ideas with
specific assumptions or panderings to a certain type of Game; It is not detrimental to development.
However it can certainly muddy the waters.

Modern Game engines have hundreds if not thousands of small bias' plaguing their Renderers,
Physics, Lighting, etc. While Awperative does not claim to be a 100% bias free system. | believe it is
quite close, and certainly more effective than any Game Engine by many times.

Design
So then how does one purge bias from a System? There's two schools of thought.

1. Make a system that works in any circumstance imaginable.
2. Allow people to modify the framework such that they can make it do anything.

If it's not immediately clear, one of these goals is very unrealistic. To explain why let's imagine we are
building a different Game Engine, and we would like to provide developers with a Player Movement
system, the system should work with any player provided transformation struct (Which should
generally hold things such as position, rotation etc.).

Idea 1


https://unity.com/
https://unity.com/
https://unity.com/

Following our previous rule of bias elimination, we should make it work in as many environments as
possible; For the sake of this example we will pretend the only factor that can change how transform
works in the world. For instance 2d or 3d, Quaternions or Euler Angles, etc.

Making a player controller that could work from 0-co dimensions is nothing short of computer magic.
And even if we did find a way to make that, we are still restricted to one type. Because our goal is to

be able to use structs provided by developers, Lest we modify the source code, our only option is to
implement an interface or abstract class so that we can actually use the transformation struct.

Even if we get past all of these problems, making a system that works for every design philosophy is
still impossible. You can only build systems with so much foresight. We can't make a system that uses
Quaternions AND Euler Angles without manually coding them both in. Our availablility and
customization relies solely on what our foresight predicted.

We have no way of knowing if someone will ever make another Quaternion type of Angle. And if
someone happens to, and wants to use it in the game, our library cannot magically support it
unfortunately.

Idea 2

That leaves us with one other option, which is the idea of modification. In Awperatives case | like to
call this "Modulation". Since Awperative is already nearly unbiased you rarely need to remove specific
old features.

Think of it as modding a video game. The end goal of Awperative is to provide a very special kind of
asset store; where even Transformation profiles are something you get or make outside of Awperative.

Imagine creating a new project and being prompted with a list of modules you can import. Say "Johns
Transformation Matrix", and then "Jasons Collision System", which uses Johns Matrix as a
dependency. I'd love to eventually see a module based philosophy like this become mainstream, even
if not within Awperative.

Purpose

So if most of the Game-Related features you would expect from a Game Development Tool is
something meant to be built on it's own, what is Awperative actually?

Well I'm glad you asked. The purpose of this documentation is to be discussing what | have been
calling "Awperative", but | also like the call it the Awperative "Kernel". The Kernel's unique strength
comes from two core design principles

e Generalization
¢ Reduction and Modulation

2/4



Generalization

Starting with Generalization; I've worked very hard to reduce redundancy and specification in some
scenarios. A good example of Generalizaiton is Doors and Windows. To us humans they are different
things, but in General, they are both just passages that open.

Awperative takes a doors and windows approach with multiple core systems; Most times we can

generalize this scenario by having both doors and windows inherit an interface called something along
the lines of "ThingsThatOpen". The same can be done with abstract classes or sometimes even better,
we can compress both systems into one class, for instance: bowls and cups can be combined into one

joined receptical class.

Reduction And Modulation

While filled with much lamer examples, | would say reduction is much more important to what makes
Awperative special. Reduction is the affirmentioned process of simplifying what Awperative handles,
when you purge Development Bias, that is Reduction, since it is reducing what is in the way.

Modulation is almost the opposite of reduction, the process of turning some specific element or
system into a deployable feature. For instance, if you make a sick Json Loading System, a good Game
Framework should make it easy to share it for other projects.

A good module should always work unless nefarious modules do not play nice with one another.

3/4



Why use Awperative?

In an industry dominated by "triple AAA" game engines a lot of people question why you would bother
with the little guy. Many people don't currently consider making games outside of a familiar three (or
four), which most consider to be

e Unityx

e Unreal Engine«

e Godot

e GameMaker (Depending on who you ask)

It undeniable that most people will start out with one of these engines and in fact most people should!
Compared to lower level game libaries such as MonoGame or Love it is comparatively easy to make
quick games and learn the basics of programming when you are using one of the high level engines.

However, as you progress throughout your developing journey it may be more tempting and realistic to
build your projects from complete or near scratch. Such a goal is not unrealistic either. The most
accomplished low level "Game Library" is probably MonoGame. Which has a very long and proven
track record of hits. Specifically, both Stardew Valley and Celeste Personal favorites of mine.

Making your game with a library also has stark financial incentives; Large game engines tend to levy
significant bills over developers using their platform. While most libraries and specifically Awperative
are completely free and open source!

4/4


https://unity.com/
https://unity.com/
https://unity.com/
https://www.unrealengine.com/en-US
https://www.unrealengine.com/en-US
https://www.unrealengine.com/en-US
https://godotengine.org/
https://godotengine.org/
https://godotengine.org/
https://gamemaker.io/en
https://gamemaker.io/en
https://gamemaker.io/en
https://store.steampowered.com/app/413150/Stardew_Valley/
https://store.steampowered.com/app/413150/Stardew_Valley/
https://store.steampowered.com/app/413150/Stardew_Valley/
https://store.steampowered.com/app/504230/Celeste/
https://store.steampowered.com/app/504230/Celeste/
https://store.steampowered.com/app/504230/Celeste/

	Introduction
	What Is Awperative
	Why Use Awperative


